Abstract Dialectical Frameworks*

Properties, Complexity, and Implementation

Stefan Ellmauthaler

Intelligent Systems Computer Science Institute University of Leipzig

15.11.2012

UNIVERSITÄT LEIPZIG

* The presented results are from the same-titled Master's thesis, done at the Vienna University of Technology (Institute of Information Systems, Database and Artificial Intelligence Group)

Outline

Motivation - Argumentation

- Situated in the intersection between
 - Philosophy,
 - Artificial Intelligence, and
 - several application domains.
- Formal approach to **nonmonotonic reasoning** with potentially **inconsistent knowledge**

Concerns of Argumentation Models

- representation of arguments
- representation of relations between arguments
- finding "acceptable" sets of arguments with semantics
 - acceptable set is an extension
 - arguments are defeasible during resolving of extensions

Motivation - ADFs

Stefan Ellmauthaler, 15,11,2012

• Dung's Argumentation Framework

- introduced by [Dung, 1995]
- simple
- powerful
- Dung's AF can only model attack relations natively
- More complex relations need auxiliary constructs

Abstract Dialectical Frameworks

- introduced by [Brewka and Woltran, 2010]
- generalization of Dung's AF
- total functions specify relation types (acceptance conditions)
- bipolar Abstract Dialectical Frameworks (BADFs) restrict relation types to be attacking or supporting
- some semantics are only defined for BADFs

UNIVERSITÄT LEIPZIG

2

Stefan Ellmauthaler, 15.11.2012

Abstract Dialectical Frameworks

В

С

D

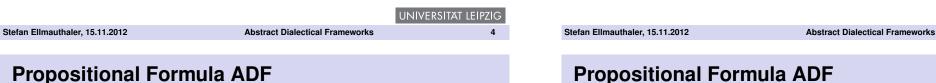
UNIVERSITÄT LEIPZIG

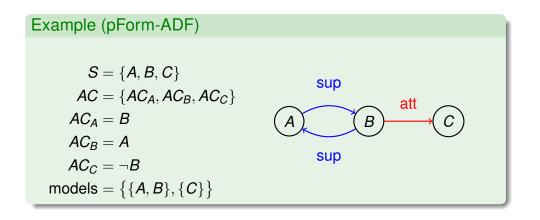
Main contributions

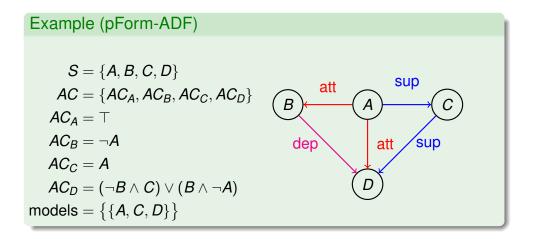
- Alternative representations for ADFs with useful properties
- Generalized and unrestricted stable model semantics for ADFs
- Implementation of a software system to compute the extensions under several semantics

Propositional Formula ADF

Definition (pForm-ADF)


A pForm-ADF is a pair D = (S, AC), where


- S is a set of statements
- AC = {AC_s}_{s∈S} is the set of acceptance conditions, where each statement has exactly one associated condition.


An acceptance condition AC_s is a propositional formula ψ .

Definition (model semantics)

Let D = (S, AC) be a pForm-ADF. $M \subseteq S$ is a model of D if for each $s \in S$, $M \in mod_p(AC_s)$ iff $s \in M$, holds. $model_{pADF}(D)$ is the set of models for the pForm-ADF D.

UNIVERSITÄT LEIPZIG

6

7

UNIVERSITÄT LEIPZIG

UNIVERSITÄT LEIPZIG

5

Stable model semantics

It is based on the transformation from an ADF to a BADF:

- splits acceptance conditions with dependent links
- one AC with supporting character
- one AC with attacking character
- done by additional criteria in the ACs

Example

 $egin{aligned} & \mathsf{AC}_s = (a \wedge b) \lor (\neg a \wedge c) \mapsto s' \lor s'' \ & \mathsf{AC}_{s'} = ((a \wedge b) \lor (\neg a \wedge c)) \land a \ & \mathsf{AC}_{s''} = ((a \wedge b) \lor (\neg a \wedge c)) \land \neg a \end{aligned}$

		UNIVERSITÄT LEIPZIG
Stefan Ellmauthaler, 15.11.2012	Abstract Dialectical Frameworks	8

ASP encoding

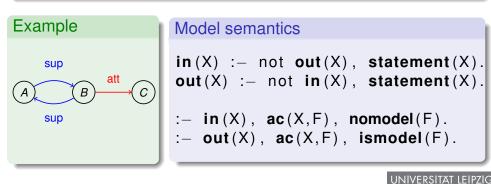
- Encoding for all semantics [Ellmauthaler and Wallner, 2012]
- Based on pForm-ADF representation
- Utilize different logic programming techniques
 - Guess & Check
 - Saturation
 - Optimization
 - Subset-maximality
 - Iterations
- Implementation uses the Potassco Answer Set Solving Collection [Gebser et al., 2011]

Stable model semantics

- stable semantics for bipolar pForm-ADFs
- generalization lifts the restriction of bipolar ADFs

Definition ((generalized) stable model for pForm-ADFs)

Let D = (S, AC) be a (bipolar) pForm-ADF. A model M of D is a stable model if M is the least model of the reduced pForm-ADF $D^M = (S^M, AC^M)$ obtained from D by


- (I) eliminating all nodes not contained in *M*, s.t. $S^M = S \cap M$,
- (II) for all $s \in S^M$ substitute in AC_s all $a \in atoms(AC_s)$ with \perp if $a \notin S^M$,
- (III) for all $s \in S^M$ substitute in AC_s all $a \in atoms(AC_s)$ with \perp if $a \in att(AC_s)$.
- (IV) for all $s \in S^M$, if $\{a_1, ..., a_n\}$ is the set of all selected dependent variables in AC_s and M then $AC_s^M = AC_s \land a_1 \land ... \land a_n$

```
Stefan Ellmauthaler, 15.11.2012
```

```
Abstract Dialectical Frameworks
```

ASP Encoding

Example (Instance	format)	
statement(a). statement(b). statement(c).	ac (a,b). ac (b,a). ac (c, neg (b)).	<pre>supp(b,a). supp(a,b). att(b,c).</pre>

UNIVERSITÄT LEIPZIG

Stefan Ellmauthaler, 15.11.2012

11

UNIVERSITÄT LEIPZIG

9

- Implementation for the following semantics
 - conflict-free set
 - model
 - linktype distinction
 - stable model
 - admissible set
 - preferred model
 - well-founded model
- Preliminary benchmark tests for BADFs with up to 30 statements and up to 8 links per statement

Achievements - Theoretical

- Alternative Representations for ADFs
 - Propositional Formula ADFs
 - Hypergraph ADFs
- Subclass for BADFs on pForm-ADFs (monotone pForm-ADF)
- ADF \rightarrow BADF transformation
- Unrestricted generalized stable models semantics
- **Complexity results** for link-type decision problem for ADFs (coNP-complete)
- **Complexity results** for the generalized stable model semantics (*CA^{monotone}* = NP-complete)
- **Counter-examples** where AF based inter-semantics relations for ADFs do not hold

NIVERSITÄT LEIPZIG			UNIVERSITÄT LEIPZIG
12	Stefan Ellmauthaler, 15.11.2012	Abstract Dialectical Frameworks	13

Future Work

- Further investigations of inter-semantic relations and possibly revamping some semantics
- Further investigation of the correspondence between stable model semantics and the Gelfond-Lifschitz reduct for Logic Programming
- Simulations of CAF, EAF, AFRA, ... with ADFs
- Enhance mMCS with ADFs
- Optimization of the implementation
- Utilization of other argumentation systems for AFs (e.g. CEGARTIX, DYNPARTIX)

 UNIVERSITAT LEIPZIG

 Stefan Ellmauthaler, 15.11.2012
 Abstract Dialectical Frameworks
 12

Related Work

- Many different approaches based on Dung's AF, like
 - Constraint Argumentation Frameworks (CAF) [Coste-Marquis et al., 2006],
 - Extended Argumentation Frameworks (EAF) [Modgil, 2009],
 - Argumentation Frameworks with Recursive Attacks (AFRA) [Baroni et al., 2011],
 - Context Based Argumentation [Brewka and Eiter, 2009], and
 - Managed Multi Context Systems (mMCS) [Brewka et al., 2011].

• Carneades [Gordon et al., 2007]

- is used for law interpretation
- utilizes another approach
- multiple stages of computation
- one fixed stage can be simulated with ADFs [Brewka and Gordon, 2010]

UNIVERSITÄT LEIPZIG

References I

Baroni, P., Cerutti, F., Giacomin, M., and Guida, G. (2011).
AFRA: Argumentation framework with recursive attacks.
Int. J. Approx. Reasoning, 52(1):19–37.
Brewka, G. and Eiter, T. (2009). Argumentation context systems: A framework for abstract group argumentation.

In Erdem, E., Lin, F., and Schaub, T., editors, <u>10th International</u> Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), volume 5753 of Lecture Notes in Computer Science, pages 44–57. Springer.

		UNIVERSITÄT LEIPZ
Stefan Ellmauthaler, 15.11.2012	Abstract Dialectical Frameworks	1

References III

Srewka, G. and Woltran, S. (2010).

Abstract dialectical frameworks.

In Lin, F., Sattler, U., and Truszczyński, M., editors, <u>Principles of</u> Knowledge Representation and Reasoning: Proceedings of the Twelfth International Conference, KR 2010, pages 102–111. AAAI Press.

Coste-Marquis, S., Devred, C., and Marquis, P. (2006). Constrained argumentation frameworks.

In Doherty, P., Mylopoulos, J., and Welty, C. A., editors, <u>Tenth</u> International Conference on Principles of Knowledge Representation and Reasoning (KR), pages 112–122. AAAI Press.

References II

- Brewka, G., Eiter, T., Fink, M., and Weinzierl, A. (2011).
 Managed multi-context systems.
 In Walsh, T., editor, Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pages 786–791. AAAI Press.
- Brewka, G. and Gordon, T. F. (2010). Carneades and abstract dialectical frameworks: A reconstruction.

In Baroni, P., Cerutti, F., Giacomin, M., and Simari, G. R., editors, Computational Models of Argument: Proceedings of COMMA 2010, volume 216 of Frontiers in Artificial Intelligence and Applications, pages 3–12. IOS Press.

PZIG			UNIVERSITÄT LEIPZIG
16	Stefan Ellmauthaler, 15.11.2012	Abstract Dialectical Frameworks	17

References IV

Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.

Artif. Intell., 77(2):321-358.

Ellmauthaler, S. (2012).

Abstract Dialectical Frameworks: Properties, Complexity, and Implementation.

Master's thesis, Technische Universität Wien, Institut für Informationssysteme.

Ellmauthaler, S. and Wallner, J. P. (2012). Evaluating Abstract Dialectical Frameworks with ASP.

In Proceedings of the 4th Conference on Computational Models of Argument (COMMA 2012), pages 505–506. IOS Press.

UNIVERSITÄT LEIPZIG

Stefan Ellmauthaler, 15.11.2012

UNIVERSITÄT LEIPZIG

References V

 Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., and Schneider, M. T. (2011).
 Potassco: The potsdam answer set solving collection.
 <u>Al Commun.</u>, 24(2):107–124.

Gordon, T. F., Prakken, H., and Walton, D. N. (2007). The Carneades model of argument and burden of proof. <u>Artif. Intell.</u>, 171:875–896.

Modgil, S. (2009). Reasoning about preferences in argumentation frameworks. Artif. Intell., 173(910):901 – 934.

Stefan Ellmauthaler, 15.11.2012

Abstract Dialectical Frameworks

UNIVERSITÄT LEIPZIG

20