Multi-Context Reasoning in Continuous Data-Flow Environments¹ Modelling with reactive Multi-Context Systems

Stefan Ellmauthaler ellmauthaler@informatik.uni-leipzig.de

Computer Science Institute Leipzig University Germany

STREAM REASONING WORKSHOP 2019 Linköping April, 16^{th} 2019

Multi-Context Systems at SR-Workshops

Berlin 2016

- Inconsistency Management in reactive Multi-Context Systems
- Stream Packing in asynchronous Multi-Context Systems (given by Jörg Pührer)

Zürich 2018

Asynchronous Multi-Context Systems

Today

- Short introduction to reactive Multi-Context Systems
- Modelling with reactive Multi-Context Systems

Logic

an Abstract Representation

- An abstract way to define a Logic
- Capable of realising monotone and non-monotone logics
- Representing different number of values (e.g. binary, many valued, fuzzy values, ...)

Definition (Logic [Brewka and Eiter, 2007])

A logic is a triple $L = \langle KB, BS, \mathbf{acc} \rangle$, where

- KB is a set of knowledge bases,
- BS is a set of belief sets, and
- $acc: KB \mapsto 2^{BS}$, the acceptance function is a function which assigns to each knowledge base a set of belief sets.

Represent KRR Formalisms

Description Logic \mathcal{AL}

$$L_d = \langle KB_d, BS_d, \mathbf{acc}_d \rangle$$

- KB_d are all ontologies
- ullet BS_d is the set of deductively closed subsets in \mathcal{AL}
- \mathbf{acc}_d is a mapping of $kb \in KB_d$ to $M \subseteq 2^{BS_d}$, s.t. $\forall_{m \in M} kb \models m$ holds.

Represent KRR Formalisms

Description Logic \mathcal{AL}

$$L_d = \langle KB_d, BS_d, \mathbf{acc}_d \rangle$$

- KB_d are all ontologies
- ullet BS_d is the set of deductively closed subsets in \mathcal{AL}
- \mathbf{acc}_d is a mapping of $kb \in KB_d$ to $M \subseteq 2^{BS_d}$, s.t. $\forall_{m \in M} kb \models m$ holds.

Answer Set Programming

$$L_{asp} = \langle KB_{asp}, BS_{asp}, \mathbf{acc}_{asp} \rangle$$

- ullet Let A be the set of all possible ground atoms
- KB_{asp} is the set of all answer set programs over A.
- $BS_{asp} = 2^A$
- \mathbf{acc}_{asp} maps each ASP program to its answer sets

Origins

roactive Mul

from mMCS via [r/e]MCS to rMCS

reactive Multi-Context Systems

- based on managed Multi-Context Systems [Brewka et al., 2011]
- old version got presented at ECAI 2014 [Brewka et al., 2014]
- evolving Multi-Context Systems at ECAI 2014 [Gonçalves et al., 2014]
- ⇒ complete redefinition of rMCS

Current reactive Multi-Context Systems

- less complicated, cycle-free definitions
- a generalisation of managed Multi-Context Systems
- declarative and operative bridge rules
- results on inconsistency management
- results on complexity
- results on simulating other approaches

Building Blocks

Definition (Context)

A context is a triple $C = \langle L, OP, \mathbf{mng} \rangle$ where

- $L = \langle KB, BS, \mathbf{acc} \rangle$ is a logic,
- OP is a set of operations,
- $\mathbf{mng}: 2^{OP} \times KB \to KB$ is a management function.

Building Blocks

sensors

Definition (Context)

A context is a triple $C = \langle L, OP, \mathbf{mng} \rangle$ where

- $L = \langle KB, BS, \mathbf{acc} \rangle$ is a logic,
- OP is a set of operations,
- $\mathbf{mng}: 2^{OP} \times KB \to KB$ is a management function.

Building Blocks

storage

A context is a triple $C = \langle L, OP, \mathbf{mng} \rangle$ where

- $L = \langle KB, BS, \mathbf{acc} \rangle$ is a logic,
 - *OP* is a set of operations,
- $\mathbf{mng}: 2^{OP} \times KB \to KB$ is a management function.

Definition (Bridge Rule)

Definition (Bridge Rule)

Let $C = \langle C_1, \dots, C_n \rangle$ be a tuple of contexts and $|IL = \langle IL_1, \dots, IL_k \rangle$ a tuple of input languages. A bridge rule for C_i over C and |IL|, $i \in \{1, \dots, n\}$, is of the form

$$op \leftarrow a_1, \dots, a_j, \mathbf{not} \ a_{j+1}, \dots, \mathbf{not} \ a_m \ \mathsf{or}$$

 $\mathbf{next}(op) \leftarrow a_1, \dots, a_j, \mathbf{not} \ a_{j+1}, \dots, \mathbf{not} \ a_m$

Building Blocks

Definition (Reactive Multi-Context System)

A reactive Multi-Context System is a tuple $M = \langle C, IL, BR \rangle$, where

- $C = \langle C_1, \dots, C_n \rangle$ is a tuple of contexts;
- IL = $\langle IL_1, \dots, IL_k \rangle$ is a tuple of input languages;
- BR = $\langle BR_1, \dots, BR_n \rangle$ is a tuple such that each BR_i , $i \in \{1, \dots, n\}$, is a set of bridge rules for C_i over C and IL.

Current Snapshot

Definition (Configuration of Knowledge Bases)

Let $M = \langle \mathsf{C}, \mathsf{IL}, \mathsf{BR} \rangle$ be an rMCS, such that $\mathsf{C} = \langle C_1, \ldots, C_n \rangle$. A configuration of knowledge bases for M is a tuple $\mathsf{KB} = \langle kb_1, \ldots, kb_n \rangle$, such that $kb_i \in KB_i$, for each $i \in \{1, \ldots, n\}$. We use Con_M to denote the set of all configurations of knowledge bases for M.

Definition (Belief State)

Let $M=\langle\langle C_1,\ldots,C_n\rangle, \mathsf{IL},\mathsf{BR}\rangle$ be an rMCS. Then, a belief state for M is a tuple $\mathsf{B}=\langle B_1,\ldots,B_n\rangle$ such that $B_i\in BS_i$, for each $i\in\{1,\ldots,n\}$. We use Bel_M to denote the set of all belief states for M.

Definition (Input)

Let $M = \langle \mathsf{C}, \langle IL_1, \dots, IL_k \rangle, \mathsf{BR} \rangle$ be an rMCS. Then an input for M is a tuple $\mathsf{I} = \langle I_1, \dots, I_k \rangle$ such that $I_i \subseteq IL_i, \ i \in \{1, \dots, k\}$. The set of all inputs for M is denoted by Inp_M .

One-Shot Reasoning

- Only utilise Declarative Bridge Rules
- A belief state is an Equilibrium if
 - the updated knowledge base
 (i.e. the management function result on the belief state, the input, and
 the current configuration)
 - has as the belief state one of the accepted belief states
 (i.e. it is part of the deductive closure of the semantics)

One-Shot Reasoning

- Only utilise Declarative Bridge Rules
- A belief state is an Equilibrium if
 - the updated knowledge base
 (i.e. the management function result on the belief state, the input, and
 the current configuration)
 - has as the belief state one of the accepted belief states
 (i.e. it is part of the deductive closure of the semantics)

Definition (Equilibrium)

Let $M=\langle\langle C_1,\ldots,C_n\rangle, \mathsf{IL},\mathsf{BR}\rangle$ be an rMCS, $\mathsf{KB}=\langle kb_1,\ldots,kb_n\rangle$ a configuration of knowledge bases for M, and I an input for M. Then, a belief state $\mathsf{B}=\langle B_1,\ldots,B_n\rangle$ for M is an equilibrium of M given KB and I if, for each $i\in\{1,\ldots,n\}$, we have that

$$B_i \in \mathbf{acc}_i(kb')$$
, where $kb' = \mathbf{mng}_i(\mathbf{app}_i^{now}(\mathsf{I},\mathsf{B}), kb_i)$.

Reactive Reasoning

- Extend the concept of the Input, to be an Input Stream
- Operative Bridge Rules allow configuration changes
- Updates are based on the previously computed Equilibrium
- Results represented as Equilibria Stream and its dual Configuration
 Stream

Reactive Reasoning

Definition (Update Function)

Let $M = \langle \mathsf{C}, \mathsf{IL}, \mathsf{BR} \rangle$ be an rMCS such that $\mathsf{C} = \langle C_1, \ldots, C_n \rangle$, $\mathsf{KB} = \langle kb_1, \ldots, kb_n \rangle$ a configuration of knowledge bases for M, I an input for M, and B a belief state for M. Then, $\mathbf{upd}_M(\mathsf{KB},\mathsf{I},\mathsf{B}) = \langle kb_1', \ldots, kb_n' \rangle$ is the update function for M,

Then, $\mathbf{upd}_M(\mathsf{KB},\mathsf{I},\mathsf{B}) = \langle kb'_1,\ldots,kb'_n \rangle$ is the update function for M, such that for each $i \in \{1\ldots,n\}$, $kb'_i = \mathbf{mng}_i(\mathbf{app}_i^{next}(\mathsf{I},\mathsf{B}),kb_i)$ holds.

Definition (Input Stream)

Let $M = \langle \mathsf{C}, \mathsf{IL}, \mathsf{BR} \rangle$ be an rMCS such that $\mathsf{IL} = \langle \mathit{IL}_1, \ldots, \mathit{IL}_k \rangle$. An input stream for M (until τ) is a function $\mathcal{I} : [1..\tau] \to \mathsf{Inp}_M$ where $\tau \in \mathbb{N} \cup \{\infty\}$.

Equilibria Stream

Definition (Equilibria Stream)

Let $M=\langle\mathsf{C},\mathsf{IL},\mathsf{BR}\rangle$ be an rMCS, KB a configuration of knowledge bases for M, and $\mathcal I$ an input stream for M until τ where $\tau\in\mathbb N\cup\{\infty\}$. Then, an equilibria stream of M given KB and $\mathcal I$ is a function $\mathcal B:[1.. au]\to\mathsf{Bel}_M$ such that

- \mathcal{B}^t is an equilibrium of M given \mathcal{KB}^t and \mathcal{I}^t , where \mathcal{KB}^t is inductively defined as
 - $\mathcal{KB}^1 = \mathsf{KB}$
 - $\bullet \ \mathcal{KB}^{t+1} = \mathbf{upd}_M(\mathcal{KB}^t, \mathcal{I}^t, \mathcal{B}^t).$

In a dual manner, we will refer to the function $\mathcal{KB}:[1.. au] \to \mathsf{Con}_M$ as the configurations stream of M given KB, \mathcal{I} , and \mathcal{B} .

Modelling Aspects

Simple Tasks

- Flipping data (self-dependent)
- Handling time
- Windows
- Forgetting

Example

Flip the power for the stove if a switch is pressed.

Example

Flip the power for the stove if a switch is pressed.

Declarative approach

- $setPower(off) \leftarrow st::switch, st:pw$
- $setPower(on) \leftarrow st::switch, not st:pw$

Example

Flip the power for the stove if a switch is pressed.

Declarative approach

- setPower(off) $\leftarrow st$::switch, st:pw
- setPower(on) \leftarrow st::switch, **not** st:pw
- No Equilibrium can be found

Example

Flip the power for the stove if a switch is pressed.

Declarative approach

- $setPower(off) \leftarrow st::switch, st:pw$
- $setPower(on) \leftarrow st::switch, not st:pw$
- No Equilibrium can be found

Operational approach

- $\mathbf{next}(\mathsf{setPower}(\mathit{off})) \leftarrow \mathit{st}::\mathsf{switch}, \mathit{st}:\mathsf{pw}$
- $\mathbf{next}(\mathsf{setPower}(\mathit{on})) \leftarrow \mathit{st}::\mathsf{switch}, \mathbf{not} \; \mathit{st}:\mathsf{pw}$

Example

Flip the power for the stove if a switch is pressed.

Declarative approach

- $setPower(off) \leftarrow st::switch, st:pw$
- $setPower(on) \leftarrow st::switch, not st:pw$
- No Equilibrium can be found

Operational approach - without sensor data

- $add(switchpower) \leftarrow st::switch$
- $\mathbf{next}(\mathsf{setPower}(\mathit{off})) \leftarrow \mathit{st}:\mathsf{switchpower}, \mathit{st}:\mathsf{pw}$
- $\mathbf{next}(\mathsf{setPower}(on)) \leftarrow st$:switchpower, $\mathbf{not}\ st$:pw

Handling Time

Possible ways

- Sensor
- Time-Context

Time Context

```
\mathbf{setTime}(\mathsf{now}(\theta)) \leftarrow \mathbf{not} \ clock:timeAvailable
\mathbf{next}(add(\mathsf{timeAvailable})) \leftarrow clock:\mathsf{now}(\theta)
\mathbf{next}(setTime(\mathsf{now}(T+1))) \leftarrow clock:\mathsf{now}(T)
```

S. Ellmauthaler

Forgetting and Windowing

Volatile Information and Reasoning with a Window

```
\begin{split} \mathbf{next}(\mathsf{add}(\mathsf{alert}(stove,T))) &\leftarrow c :: \mathsf{now}(T), ec : \mathsf{alert}(stove). \\ \mathbf{next}(\mathsf{del}(\mathsf{alert}(stove,T))) &\leftarrow stE : \mathsf{alert}(stove,T), \mathbf{not} \ ec : \mathsf{alert}(stove). \\ \mathsf{add}(\mathsf{emergency}(stove)) &\leftarrow c :: \mathsf{now}(T), ec : \mathsf{alert}(stove), \\ stE : \mathsf{alert}(stove,T'), \\ stE : \mathsf{winE}(Y), |T-T'| &\geq Y. \end{split}
```

Dynamic Window

```
\begin{aligned} \mathbf{next}(\mathsf{set}(\mathsf{win}(P,X))) &\leftarrow ed : \mathsf{defWin}(P,X), \mathbf{not} \ ed : \mathsf{susp}(E). \\ \mathbf{next}(\mathsf{set}(\mathsf{win}(P,Y))) &\leftarrow ed : \mathsf{rel}(P,E,Y), ed : \mathsf{susp}(E). \\ \mathsf{alarm}(E) &\leftarrow ed : \mathsf{conf}(E). \\ \mathbf{next}(\mathsf{add}(\mathsf{P}(T))) &\leftarrow c : \mathsf{row}(T), s :: P. \\ \mathbf{next}(\mathsf{del}(\mathsf{P}(T'))) &\leftarrow ed : \mathsf{P}(T'), c :: \mathsf{row}(T), ed : \mathsf{win}(P,Z), T' < T - Z. \end{aligned}
```

Thank you for your interest

Brewka, G. and Eiter, T. (2007).

Equilibria in heterogeneous nonmonotonic multi-context systems.

In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007), pages 385–390. AAAI Press.

Brewka, G., Eiter, T., Fink, M., and Weinzierl, A. (2011).

Managed multi-context systems.

In Walsh, T., editor, *Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011)*, pages 786–791. IJCAI/AAAI.

Brewka, G., Ellmauthaler, S., Gonçalves, R., Knorr, M., Leite, J., and Pührer, J. (2018).

Reactive multi-context systems: Heterogeneous reasoning in dynamic environments.

Artificial Intelligence, 256:68-104.

Brewka, G., Ellmauthaler, S., and Pührer, J. (2014).

Multi-context systems for reactive reasoning in dynamic environments.

In Schaub, T., Friedrich, G., and O'Sullivan, B., editors, *21st European Conference on Artificial Intelligence (ECAI 2014)*, volume 263 of *Frontiers in Artificial Intelligence and Applications*, pages 159–164. IOS Press.

Ellmauthaler, S. (2018).

Multi-Context Reasoning in Continuous Data-Flow Environments.

PhD thesis, Leipzig University.

Ellmauthaler, S. (2019).

Multi-context reasoning in continuous data-flow environments.

KI - Künstliche Intelligenz, 33(1):101-104.

Gonçalves, R., Knorr, M., and Leite, J. (2014).

Evolving multi-context systems.

In Schaub, T., Friedrich, G., and O'Sullivan, B., editors, *21st European Conference on Artificial Intelligence (ECAI 2014)*, volume 263 of *Frontiers in Artificial Intelligence and Applications*, pages 375–380.