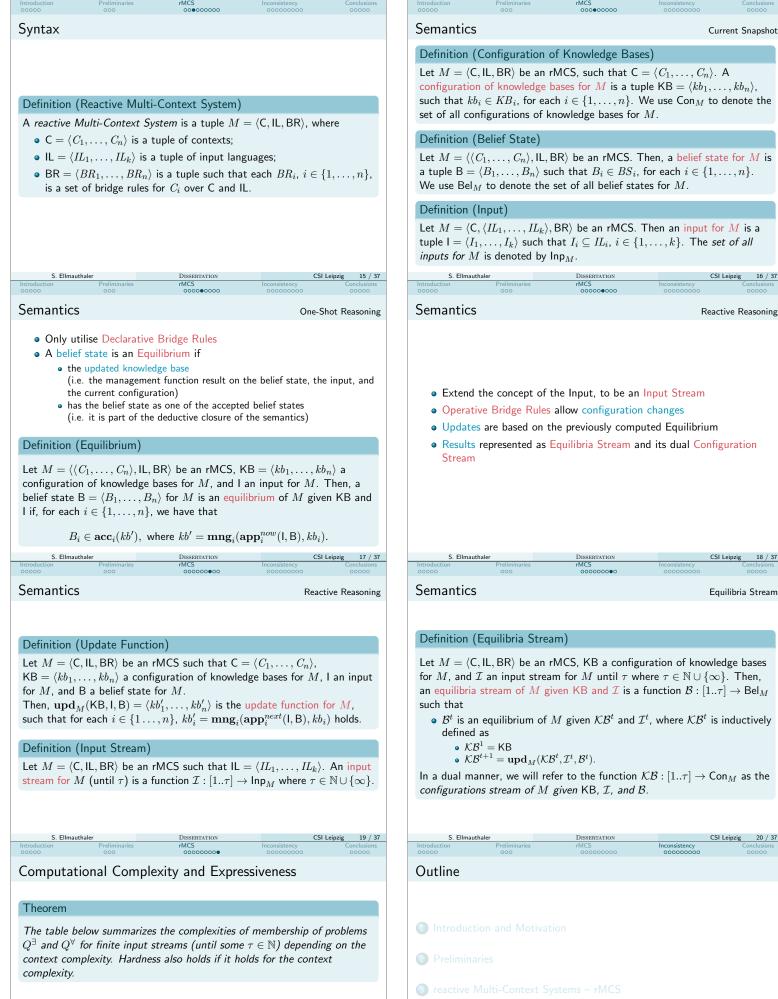


control C_{ec}

14 / 37

DISSERTATION

S. Ellmauthaler	DISSERTATION

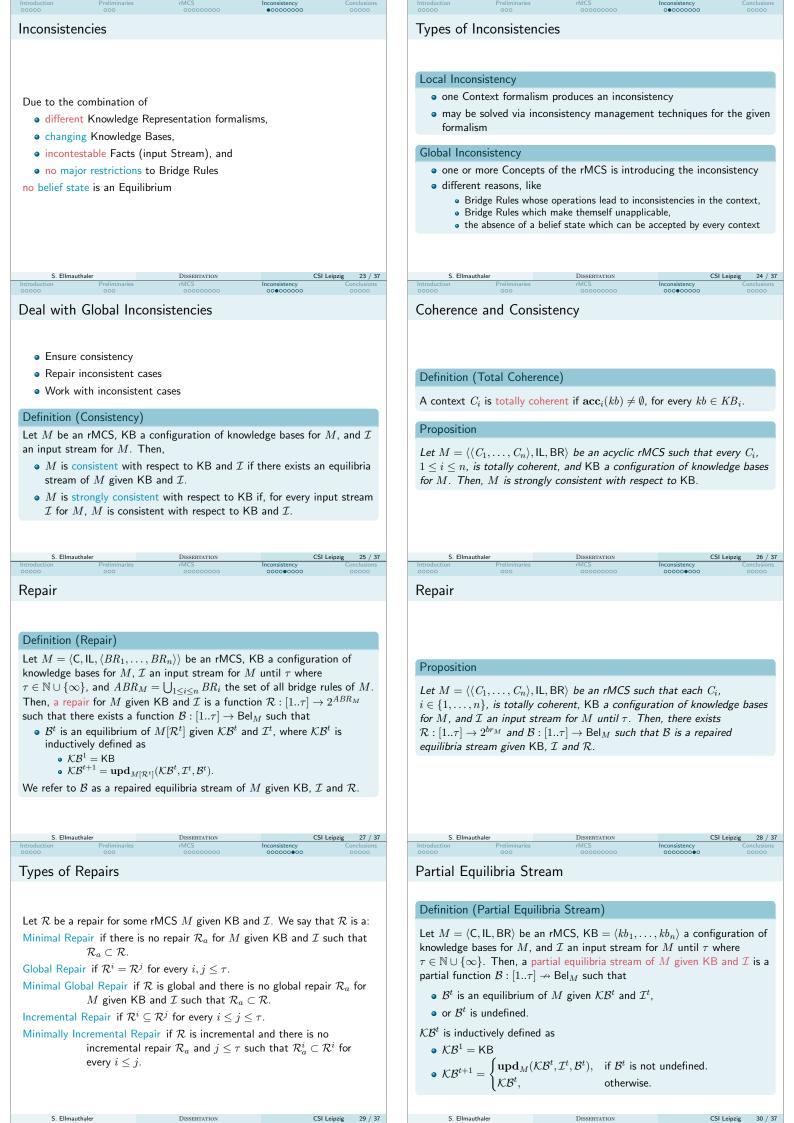


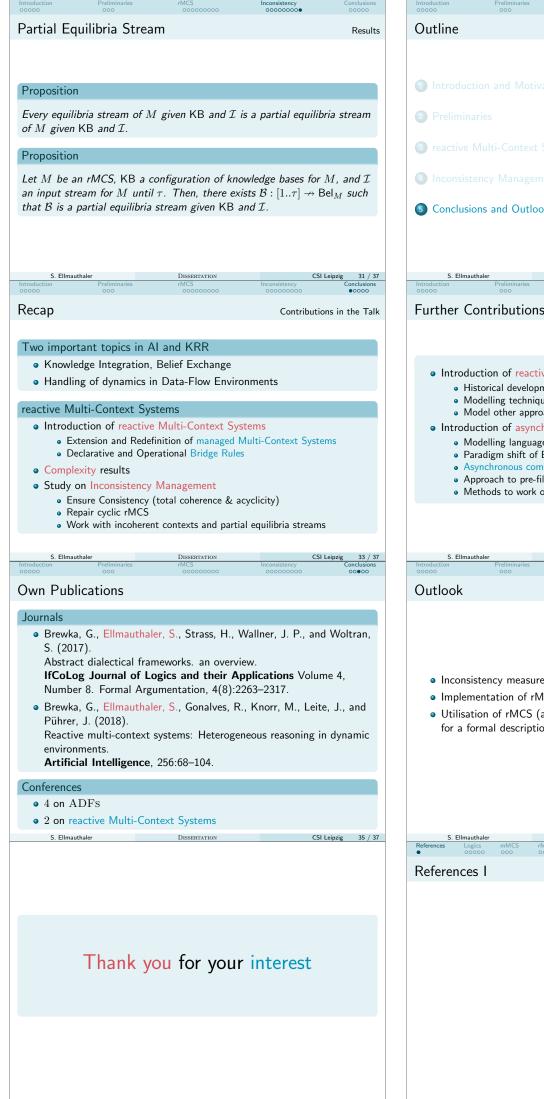
 $\mathcal{CC}(M,k:b)$ Q^{\exists} Q^{\forall} Ρ NP coNP $\pmb{\Delta}_i^{\mathbf{P}}(i \geq 2)$ $\Sigma_i^{\mathbf{P}}$ $\Pi^{\mathbf{P}}_{\mathbf{A}}$ $\Sigma^{\mathbf{P}}$ $\Sigma_i^{\mathbf{P}}(i \ge 1)$ $\Pi^{\mathbf{P}}$ PSPACE PSPACE PSPACE EXPTime EXPTime EXPTime

Inconsistency Management

20 / 37

16 / 37

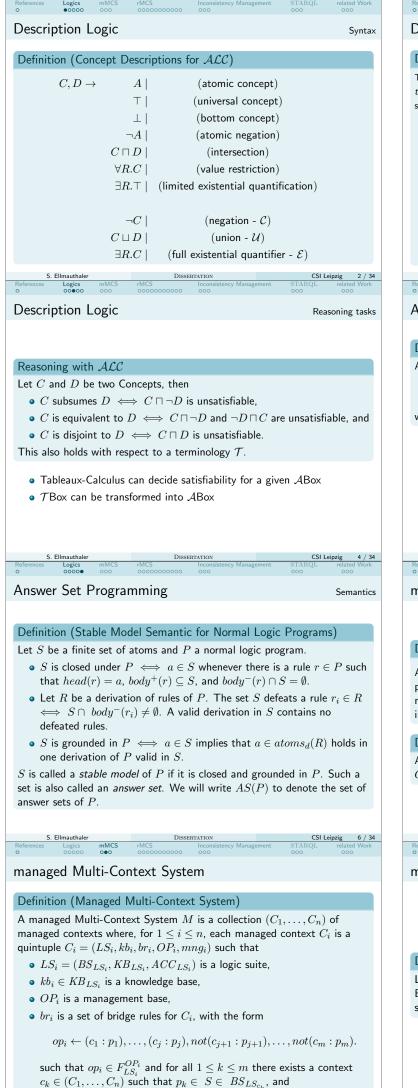




reactive Multi-Context Systems – rMCS 5 Conclusions and Outlook Introduction of reactive Multi-Context Systems Historical development of reactive Multi-Context Systems Modelling techniques and Considerations Model other approaches from the literature Introduction of asynchronous Multi-Context Systems • Modelling language for (concurrent) Computation and Reasoning Paradigm shift of Bridge Rules to Output Rules Asynchronous computation mode, without synchronised agreement • Approach to pre-filter incoming stream data (Data Packing) Methods to work on partial results and control the flow of computation • Inconsistency measurement [McIIraith and Weinberger, 2018] Implementation of rMCS Utilisation of rMCS (and aMCS) for a formal description language of distributed reasoning systems . a selection

S. Ellmauthale

CSI Loipzig 1 / 24



\bullet mng_i is a managen	nent function over LS_i and	OP_i .	
S. Ellmauthaler	DISSERTATION	CSI Leipzig	8 /

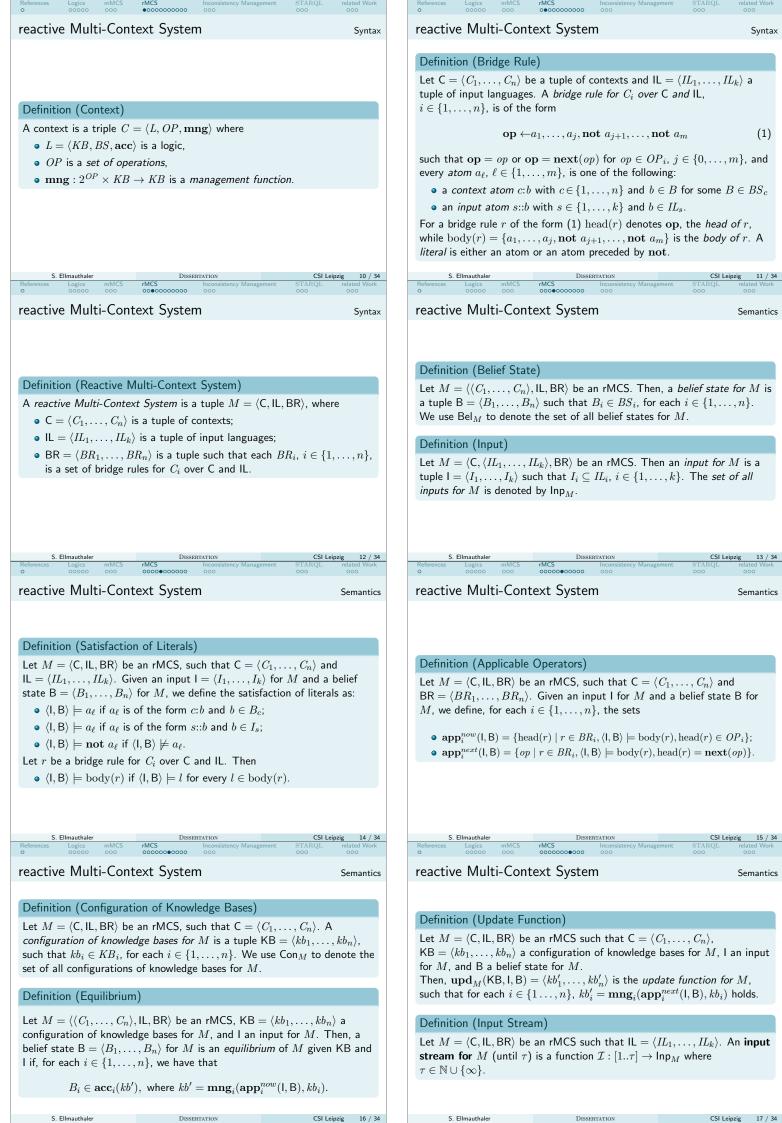
Description Logic Definition (Semantics of ALC Concepts) The Interpretation \mathcal{I} is a tuple $\langle \Delta^{\mathcal{I}}, val \rangle$, where $\Delta^{\mathcal{I}}$ is a nonempty set, the domain of the interpretation. val is a valuation function which assigns to every atomic Concept A a set $A^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ and to each atomic Role R a binary relation $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$. $\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$ $\perp^{\mathcal{I}} = \emptyset$ $(\neg A)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus A^{\mathcal{I}}$ $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$ $\forall R.C^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \forall (b).(a,b) \in R^{\mathcal{I}} \to b \in C^{\mathcal{I}}\}$ $\exists R.\top^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \exists (b). (a, b) \in R^{\mathcal{I}} \}$ $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$ $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$ $\exists R.C^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \exists (b).(a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}} \}$ CSI Leipzig Answer Set Programming Definition (Normal Logic Program Rule) A normal logic program rule r is of the form $a \leftarrow b_1, \ldots, b_n, not \ c_1, \ldots, not \ c_m$ where a, b_1, \ldots, b_n and c_1, \ldots, c_m are ground atoms. • a is the head of the rule (hd(R)). • $body^+(r)$ is the set of positive atoms b_1, \ldots, b_m and $body^{-}(r)$ is the set of negated atoms b_{m+1}, \ldots, b_n . • The whole body of a rule R is $body(r) = body^+(r) \cup body^-(r)$. • If the body is empty, the rule is a *fact*. " $\perp \leftarrow$ " can be omitted. An empty head means that the rule implies \perp . managed Multi-Context System Definition (Logic Suite) A logic suite $LS = (KB_{LS}, BS_{LS}, ACC_{LS})$ consists of the set BS_{LS} of possible belief sets, the set KB_{LS} of well-formed knowledge-bases, and a nonempty set ACC_{LS} of possible semantics of LS, i.e. $\mathbf{acc}_{LS} \in ACC_{LS}$ implies $\mathbf{acc}_{LS}: KB_{LS} \to 2^{BS_{LS}}$. Definition (Management Function) A management function over a logic suite LS and a management base OP is a function $mng: 2^{F_{LS}^{OP}} \times KB_{LS} \rightarrow 2^{KB_{LS} \times ACC_{LS}} \setminus \{\emptyset\}.$ managed Multi-Context System

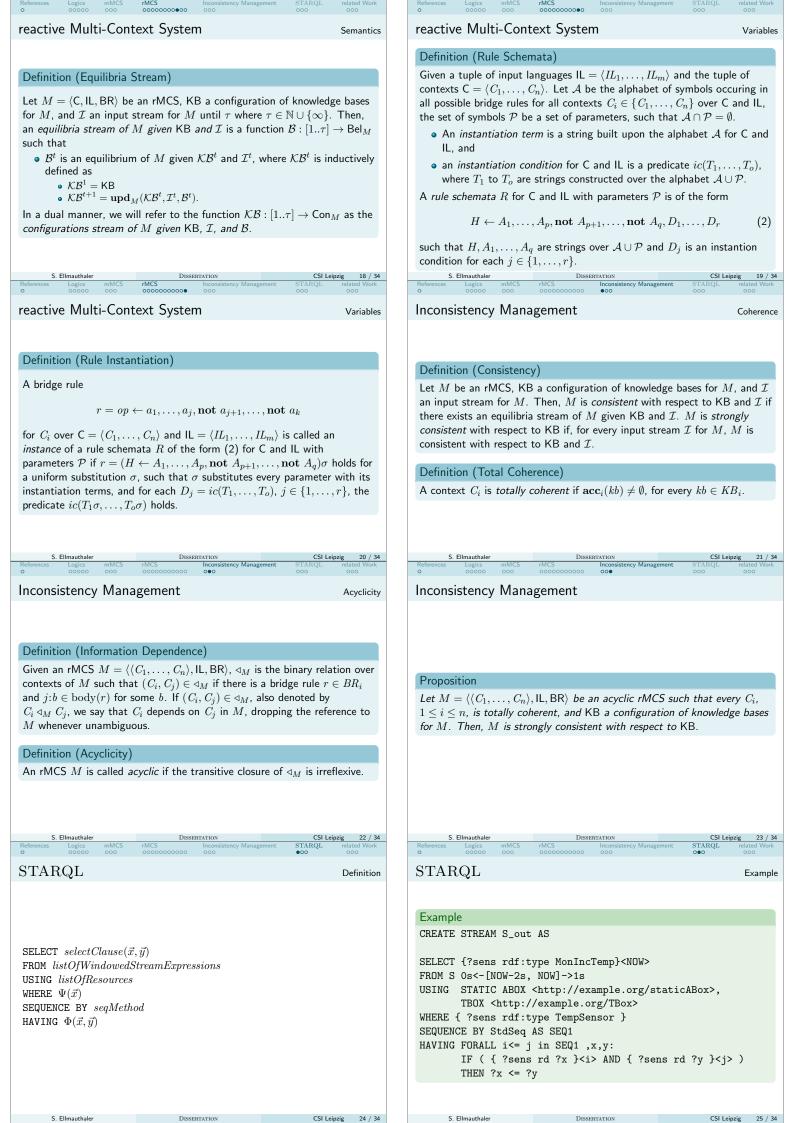
Definition (Equilibria for managed Multi-Context Systems)

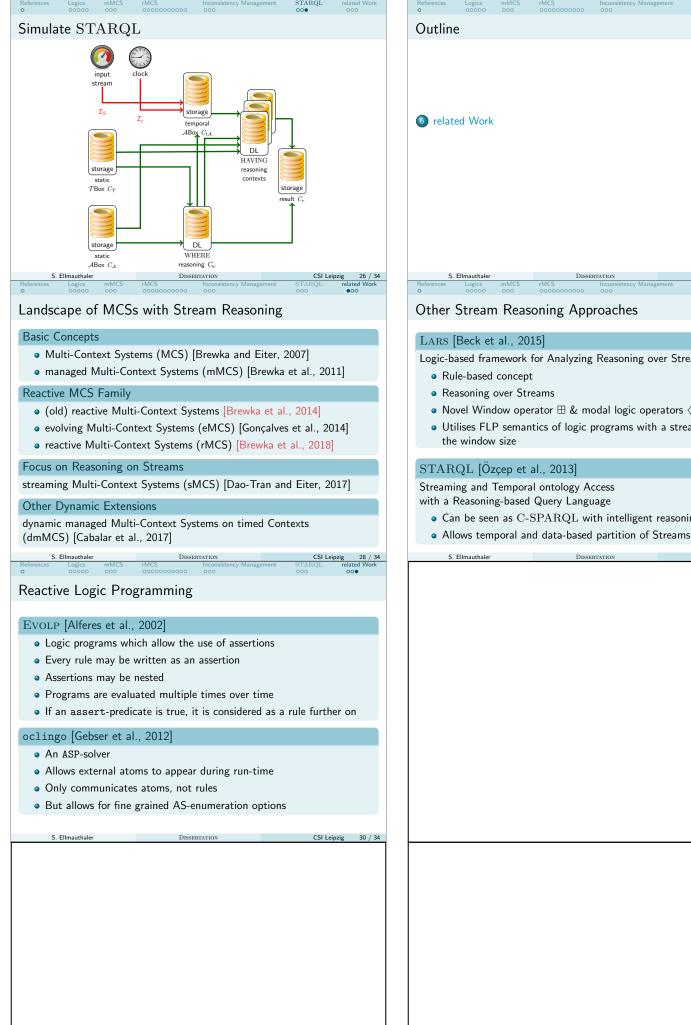
Let $M = (C_1, \ldots, C_n)$ be a managed multi-context system. A belief state $\mathsf{B} = (b_1, \dots, b_n)$ is an equilibrium of M iff for every $1 \leq i \leq n$ there exists some $(kb'_i, \mathbf{acc}_{LS_i}) \in mng_i(app_i(S), kb_i)$ such that $S_i \in \mathbf{acc}_{LS_i}(kb'_i)$.

Semantics

Synta>







Other Stream Reasoning Approaches

Logic-based framework for Analyzing Reasoning over Streams

- ullet Novel Window operator \boxplus & modal logic operators \diamondsuit and \Box
- Utilises FLP semantics of logic programs with a stream "memory" of

Streaming and Temporal ontology Access

- Can be seen as C-SPARQL with intelligent reasoning